Pipework

Dimensions

Pipe wall thicknesses for welded flanges (EN 1092-1:2013-04)

valve

Ø

PN 2.5

Sp

PN 6

Sp

PN 10

Sp

PN 16

Sp

PN 25

Sp

PN 40

Sp

PN 63

Sp

PN 100

Sp

17.2

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

21.3

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

26.9

2.3

2.3

2.3

2.3

2.3

2.3

2.6

2.6

33.7

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

42.4

2.6

2.6

2.6

2.6

2.6

2.6

2.9

2.9

48.3

2.6

2.6

2.6

2.6

2.6

2.6

2.9

2.9

60.3

2.9

2.9

2.9

2.9

2.9

2.9

2.9

3.2

76.1

2.9

2.9

2.9

2.9

2.9

2.9

3.2

3.6

88.9

3.2

3.2

3.2

3.2

3.2

3.2

3.6

4.0

114.3

3.6

3.6

3.6

3.6

3.6

3.6

4.0

5.0

139.7

4.0

4.0

4.0

4.0

4.0

4.0

4.5

6.3

168.3

4.5

4.5

4.5

4.5

4.5

4.5

5.6

7.1

219.1

6.3

6.3

6.3

6.3

6.3

6.3

7.1

10.0

273.0

6.3

6.3

6.3

6.3

7.1

7.1

8.8

12.5

323.9

7.1

7.1

7.1

7.1

8.0

8.0

11.0

14.2

355.6

7.1

7.1

7.1

8.0

8.0

8.8

12.5

16.0

406.4

7.1

7.1

7.1

8.0

8.8

11.0

14.2

457

7.1

7.1

7.1

8.0

8.8

12.5

508

7.1

7.1

7.1

8.0

10.0

14.2

610

7.1

7.1

7.1

8.8

11.0

16.0

711

7.1

7.1

8.0

8.8

12.5

813

7.1

7.1

8.0

10.0

14.2

914

7.1

7.1

10.0

10.0

16.0

1,016

7.1

7.1

10.0

10.0

17.5

1,219

7.1

8.0

11.0

12.5

1,422

7.1

8.0

12.5

14.2

1,626

8.0

9.0

14.2

16.0

Excerpt from Table A.1 in EN 1092-1:2013-0 — wall thickness for type 11

A Ø

Outer diameter

Sp

Wall thickness

PN

Nominal pressure stage

Pressure and temperature ratings1)

The pressure and temperature ratings of flanges is based on the material groups.
The following materials and groups are customary in the area of steam boilers:

Material group

Description

Material number

3E0

Unalloyed steels with guaranteed strength characteristics at higher temperatures

1.0352 P245 GH
1.0460 P250 GH

3E1

Unalloyed steels with defined characteristics up to 400°C, upper yield point > 265N/mm²

1.0426 P280 GH

4E0

Low alloy steels with 0.3% molybdenum

1.5415 16Mo3

12E0

Standard carbon content, stabilised with Ti or Nb

1.4541 X6CrNiTi18-10
1.4550 X6CrNiNb18-10
1.4941 X6CrNiTiB18-10

15E0

Standard carbon content, alloyed with molybdenum, stabilised with Ti or Nb

1.4571 X6CrNiMoTi17-12-2
1.4580 X6CrNiMoNb17-12-2

Pressure-temperature assignment

1) Source: EN 1092-1:2013-04 Table 9, G.2.2, G.3.2, Table D.1

Information

Notices regarding the following tables and diagrams:

  • In accordance with flange standard EN 1092-1:2013-04
  • Only the lower range and therefore the highest pressures are assumed as reference value for the thickness vR; lower permissible pressures PS may need to be used for larger flange dimensions and therefore thicker raw material
  • When using austenitic materials, differentiations are not only made in the material group, but also sometimes in the individual material. The standard materials are subsequently used:
    • 12E0 > 1.4541
    • 15E0 > 1.457 
  • RT (room temperature) = – 10°C – +50°C
  • Linear interpolation between the table values is to be used
  • PN nominal pressure stage
  • PS permissible pressure [bar]
  • TS permissible temperature [°C]

PN10

TS [°C]

 

RT

100

150

200

250

300

350

400

450

460

470

480

490

500

510

520

530

PS [bar]

3E0

10.0

9.2

8.8

8.3

7.6

6.9

6.4

5.9

3.2

 

3E1

10.0

10.0

10.0

10.0

9.7

8.8

8.0

7.3

4.0

 

4E0

10.0

10.0

10.0

10.0

9.7

8.5

8.0

7.4

6.9

6.4

5.9

5.4

4.9

4.4

3.5

2.8

2.2

Excerpt from table G.2.1–3 – PN 10 for ferritic materials

TS [°C]

 

RT

100

150

200

250

300

350

400

450

500

550

560

570

580

590

600

PS [bar]

12E0

10.0

9.9

9.3

8.8

8.4

7.9

7.6

7.4

7.2

7.0

6.7

6.1

5.6

5.0

4.5

4.0

 

15E0

10.0

10.0

9.8

9.3

8.8

8.3

8.0

7.8

7.6

7.5

7.4

7.4

7.3

6.7

6.0

5.5

Excerpt from table G.4.1–3 – PN 10 for austenitic materials

PN16

TS [°C]

 

RT

100

150

200

250

300

350

400

450

460

470

480

490

500

510

520

530

PS [bar]

3E0

16.0

14.8

14.0

13.3

12.1

11.0

10.2

9.5

5.2

 

3E1

16.0

16.0

16.0

16.0

15.6

14.0

12.9

11.8

6.4

 

4E0

16.0

16.0

16.0

16.0

15.6

13.7

12.9

11.9

11.0

10.2

9.4

8.6

7.8

7.0

5.6

4.4

3.5

Excerpt from table G.2.1–4 – PN 16 for ferritic materials

TS [°C]

 

RT

100

150

200

250

300

350

400

450

500

550

560

570

580

590

600

PS [bar]

12E0

16.0

15.8

14.9

14.1

13.4

12.7

12.2

11.8

11.6

11.3

10.8

9.8

8.9

8.1

7.3

6.5

 

15E0

16.0

16.0

15.6

14.9

14.1

13.3

12.8

12.4

12.2

12.0

11.9

11.8

11.7

10.7

9.7

8.8

Excerpt from table G.4.1–4 – PN 16 for austenitic materials

PN 25

TS [°C]

 

RT

100

150

200

250

300

350

400

450

460

470

480

490

500

510

520

530

PS [bar]

3E0

25.0

23.2

22.0

20.8

19.0

17.2

16.0

14.8

8.2

 

3E1

25.0

25.0

25.0

25.0

24.4

22.0

20.2

18.4

10.1

 

4E0

25.0

25.0

25.0

25.0

24.4

21.4

20.2

18.6

17.2

16.0

14.7

13.5

12.3

11.0

8.8

7.0

5.5

Excerpt from table G.2.1–5 – PN 25 for ferritic materials

TS [°C]

 

RT

100

150

200

250

300

350

400

450

500

550

560

570

580

590

600

PS [bar]

12E0

25.0

24.7

23.3

22.1

21.0

19.8

19.1

18.5

18.1

17.7

16.9

15.3

14.0

12.7

11.4

10.2

 

15E0

25.0

25.0

24.5

23.3

22.1

20.8

20.1

19.5

19.1

18.8

18.6

18.5

18.3

16.7

15.2

13.8

Excerpt from table G.4.1–5 – PN 25 for austenitic materials

PN 40

TS [°C]

 

RT

100

150

200

250

300

350

400

450

460

470

480

490

500

510

520

530

PS [bar]

3E0

40.0

37.1

35.2

33.3

30.4

27.6

25.7

23.8

13.1

 

3E1

40.0

40.0

40.0

40.0

39.0

35.2

32.3

29.5

16.1

 

4E0

40.0

40.0

40.0

40.0

39.0

34.2

32.3

29.9

27.6

25.6

23.6

21.6

19.7

17.7

14.0

11.2

8.9

Excerpt from table G.2.1–6 – PN 40 for ferritic materials

TS [°C]

 

RT

100

150

200

250

300

350

400

450

500

550

560

570

580

590

600

PS [bar]

12E0

40.0

39.6

37.3

35.4

33.7

31.8

30.6

29.7

29.0

28.3

27.0

24.5

22.4

20.3

18.2

16.3

 

15E0

40.0

40.0

39.2

37.3

35.4

33.3

32.1

31.2

30.6

30.0

29.9

29.6

29.3

26.8

24.3

22.0

Excerpt from table G.4.1–6 – PN 40 for austenitic materials

PN 63

TS [°C]

 

RT

100

150

200

250

300

350

400

450

460

470

480

490

500

510

520

530

PS [bar]

3E0

63.0

58.5

55.5

52.5

48.0

43.5

40.5

37.5

20.7

 

3E1

63.0

63.0

63.0

63.0

61.5

55.5

51.0

46.5

25.5

 

4E0

63.0

63.0

63.0

63.0

61.5

54.0

51.0

47.1

43.5

40.3

37.2

34.1

31.0

27.9

22.2

17.7

14.1

Excerpt from table G.2.1–7 – PN 63 for ferritic materials

TS [°C]

 

RT

100

150

200

250

300

350

400

450

500

550

560

570

580

590

600

PS [bar]

12E0

63.0

62.4

58.8

55.8

53.1

50.1

48.3

46.8

45.7

44.7

42.6

38.7

35.4

32.1

28.8

25.8

 

15E0

63.0

63.0

61.8

58.8

55.8

52.5

50.7

49.2

48.3

47.4

47.1

46.6

46.2

42.3

38.4

34.8

Excerpt from table G.4.1–7 – PN 63 for austenitic materials

Flow speed

Medium

Area of application

Recommended speed

Steam

0 –1 bar

20 – 25m/s

 

1 – 40 bar

30 – 40m/s

Water

Suction line

0.4 (0.25 – 0.6) m/s

 

Pressure line

2 (1.5 – 3) m/s

Condensate

Steam fraction

15 m/s

 

Water fraction

2 m/s

Flue gas

16.5 m/s

Oil

Light fuel oil intake side

0.5 m/s

 

Light oil discharge side

1 m/s

 

Heavy fuel oil intake side

0.3 m/s

 

Heavy fuel oil discharge side

0.5 m/s

Natural gas

 

No specifications
Design via pressure loss

Standard design speeds (recommended speeds) for pipework sizing

Pressure loss – guide values for the pressure loss coefficient ζ

Shut-off valve, servovalve, butterfly valve

DN

Kvs value

Pressure loss coefficient ζ 1)

 

Shut-off valve

Servovalve

Butterfly valve

Shut-off valve

Servovalve

Butterfly valve

15

5.3

4

2.9

5.1

0.9

20

7.2

6.3

4.9

6.4

2.4

25

12

10

26

4.3

6.2

1.7

32

16

16

26.5

6.5

6.5

0.7

40

28.5

25

49.6

5

6.5

0.4

50

43

40

116

5.4

6.2

0.5

65

75

63

259

5.1

7.2

0.3

80

105

100

377

5.9

6.5

0.4

100

170

160

763

5.5

6.2

0.3

125

270

250

1,030

5.3

6.2

0.2

150

405

400

1,790

4.9

5.1

0.2

200

675

3,460

5.6

0.2

250

1,090

5,070

5.2

0.2

300

1,460

7,430

6.1

0.2

350

2,010

10,320

5.9

0.3

400

2,640

13,290

5.9

0.2

Shut-off valve, servovalve, butterfly valve
1) The pressure loss coefficient ζ is relative to the nominal diameter DN.

Intermediate flange-type non-return valve, non-return valve, dirt trap

DN

Kvs value

Pressure loss coefficient ζ 1)

 

ZIntermediate flange-type
non-return valve

Non-return valve

Dirt trap

Intermediate flange-type
non-return valve

Non-return valve

Dirt trap

15

4.4

5.7

6.9

4.2

2.5

1.7

20

7.1

7.8

10.8

5.1

4.2

2.2

25

12

11.8

17.8

4.3

4.5

2.0

32

19.5

17.9

26.1

4.4

5.2

2.5

40

25

27.5

36.7

6.5

5.4

3.0

50

46

48

61

4.7

4.3

2.7

65

69

77.6

98.6

6.0

4.7

2.9

80

87

109

146

8.7

5.5

3.1

100

122

168

234

10.7

5.7

2.9

125

251

376

6.2

2.8

150

389

394

5.3

5.2

200

664

652

5.8

6.0

250

1,017

1,225

6.0

4.2

300

1,446

1,873

6.2

3.7

350

2,042

5.8

400

2,725

5.5

500

4,167

5.8

Intermediate flange-type non-return valve, non-return valve, dirt trap

1) The pressure loss coefficient ζ is relative to the nominal diameter DN.

Pressure loss of water vapour and other gases

 
Berechnung

Pressure loss of water vapour and other gases with isothermal flow

   
  with isothermal flow T2 = T1


   with isothermal flow T2 = T1

 

p1

Pressure upstream of the pipe section [Pa]

p 2

Pressure downstream of the pipe section [Pa]

λ

Pipe friction coefficient

l

Length of pipe [m]

d

Diameter of pipe [m]

ζ

Pressure loss coefficient

Information

For calculation of pressure loss up to consumer ζ =

 + 

ζ steam extraction

           

Tab. Shut-off valve, servovalve, butterfly valve

 + 

ζ extension/availability

   

as a rule following steam extraction

 + 

n elbow ∙ ζ elbow

   

Guide value ζ90° elbow ≈ 0.5

 + 

 + 

ζ valves

 + 

ζ consumer inlet

   

if applicable (can be disregarded as a rule)

ρ

Density of flowing medium in kg/m³

u

Average speed at pipe inlet

T1

Temperature of the medium at the pipe inlet

T2

Temperature of the medium at the pipe inlet

The deviation compared to adiabatic flow can normally be disregarded.

Pressure loss of liquids

Conversion of Kv value, pressure loss coefficient ζ and flow coefficient Cv

 
Berechnung

Conversion of Kv value of a valve to the pressure loss coefficient ζ

Conversion of pressure loss coefficient ζ of a valve to the Kv valve

Conversion of Cv value (flow coefficient) in metric systems to the Kv value